

UNIVERSITAT Politècnica de València

SAR for activity monitoring during COVID-19

Jorge García Tíscar

Assistant professor of Aerospace Engineering Departamento de Máquinas y Motores Térmicos *Contact: jorgarti@upv.es*

- Example of COVID-related activity: field hospital deployment
 - Field hospital next to La Fe hospital complex in Valencia, Spain
 - Pre-event situation (hi-res photogrammetric flight):

- Time-sensitive situation: construction announced March 19
- Issue: optical imagery often obscured by clouds
 - Sentinel-2: several acquisitions with high cloud cover:

Universitat Politècnica de València www.upv.es

- SAR imagery: Sentinel-1 orthorectified γ^o (VV polarization)
 - Advantage: no cloud obscuring or day-to-day lighting variations
 - Smooth surface of empty lot enhances contrast vs buildings

- <u>Quantification</u>: simple statistical analysis
 - 1. Compute¹ pre-event baseline of mean and standard deviation of γ°
 - 2. Identify outlier pixels ($\gamma_i^{o} > \mu_i + 3\sigma_i$) for each acquisition of interest
 - 3. Restrict to top-75% brighter outliers ($\gamma_i^o > P_{75\%}$) of each frame:

- <u>Quantification</u>: simple statistical analysis
 - Sum of outliers within a ROI allows tracking of construction progress
 - Stacking outliers highlights consistent, permanent structures
 - Rapid field hospital deployment (~3 weeks)

Universitat Politècnica de València

www.upv.es

Quantification: simple statistical analysis

Economic activities are also tracked: ports, construction, agriculture... Changes since the baseline period are <u>highlighted</u> • May allow i.e. rapid discovery of non-essential activity, etc.

UNIVERSITAT POLITÈCNICA DE VALÈNCIA

Universitat Politècnica de València www.upv.es

- <u>Quantification</u>: data-driven modal decomposition methods
 - Example: Proper Orthogonal Decomposition (POD, also called PCA)
 - A process V is decomposed into spatial modes Ψ_i & time evolutions a_i
 - Here V is the time-evolution of $\gamma^0(x, y, t) = \sum \Psi_i(x, y) \cdot a_i(t) =$

- Application of the simple statistical analysis in other region:
 - Economic activities during COVID-19: ship movements in Rotterdam
 - Shows passing (fewer stacked outliers) and newly-moored ships (higher)

Universitat Politècnica de València www.upv.es

- Methods: MATLAB + Copernicus data through Sentinel Hub
- Conclusions:
 - Pandemic response monitoring is a very time-sensitive application
 - Optical imagery may present critical time gaps due to cloud cover
 - SAR helps track & quantify relevant emergency & economic activity...
 - ...through simple statistical analysis
 - Pros: extremely simple per-pixel algorithm, implementable in EO Browser, non-technical staff (or even concerned citizens) can monitor activity
 - Cons: does not consider neighboring pixels, issues with flares, requires tuning
 - ...through data-driven modal decomposition methods
 - Pros: hands-free, able to identify coherent spatial evolutions (not just pixels)
 - Cons: not implementable in EO Browser, modes can be difficult to interpret
- Possible follow-up works:
 - Implementation of simple statistical analysis as EO Browser evalscript
 - Use of higher resolution SAR imagery (TerraSAR-X, TDX, PAZ, etc.)

